
NASA/TM--2000-209953

P
P

Improving the Aircraft Design Process Using

Web-based Modeling and Simulation

John A. Reed

The University of Toledo, Toledo, Ohio

Gregory J. Follen

Glenn Research Center, Cleveland, Ohio

Abdollah A. Afjeh

The University of Toledo, Toledo, Ohio

w

May 2000



The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the
NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its
research and development activities. These results

are published by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA programs and include extensive data
or theoretical analysis. Includes compilations

of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis,

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,
often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include

creating custom thesauri, building customized
data bases, organizing and publishing research

results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at h ttp:llwwzo.sti.nasa.gov

• E-mail your question via the Intemet to

help@sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076



NASA/TMm2000-209953

Improving the Aircraft Design Process Using

Web-based Modeling and Simulation

John A. Reed

The University of Toledo, Toledo, Ohio

Gregory J. Follen
Glenn Research Center, Cleveland, Ohio

Abdollah A. Afjeh

The University of Toledo, Toledo, Ohio

National Aeronautics and

Space Administration

Glenn Research Center

May 2000



This report contains preliminary

findings, subject to revision as

analysis proceeds.

Trade names or manufacturers' names are used in this report for

identification only. This usage does not constitute an official

endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MID 21076
Price Code: A03

Available from

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100
Price Code: A03



Improving the Aircraft Design Process Using

Web-based Modeling and Simulation

John A. Reed

The University of Toledo

Toledo, Ohio 43606

Gregory J. Follen

National Aeronautics and Space Administration
John H. Glenn Research Center

Cleveland, Ohio 44135

Abdollah A. Afjeh

The University of Toledo

Toledo, Ohio 43606

Abstract

Designing and developing new aircraft systems is time-consuming and expensive.

Computational simulation is a promising means for reducing design cycle times, but requires a

flexible software environment capable of integrating advanced multidisciplinary and multifidelity

analysis methods, dynamically managing data across heterogeneous computing platforms, and

distributing computationally complex tasks. Web-based simulation, with its emphasis on

collaborative composition of simulation models, distributed heterogeneous execution, and

dynamic multimedia documentation, has the potential to meet these requirements. This paper

outlines the current aircraft design process, highlighting its problems and complexities, and

presents our vision of an aircraft design process using Web-based modeling and simulation.

NASA/TM--2000-209953 1



1 Introduction

Intensive competition in the commercial aviation industry is placing increasing pressure on

aircraft manufacturers to reduce the time, cost and risk of product development. To compete

effectively in today's global marketplace, innovative approaches to reducing aircraft design-cycle

times are needed. Computational simulation, such as computational fluid dynamics (CFD) and

finite element analysis (FEA), has the potential to compress design-cycle times due to the

flexibility it provides for rapid and relatively inexpensive evaluation of alternative designs and

because it can be used to integrate multidisciplinary analysis earlier in the design process [17].

Unfortunately, bottlenecks caused by data handling, heterogeneous computing environments and

geographically separated design teams, continue to restrict the use of these tools. In order to fully

realize the potential of computational simulation, improved integration in the overall design

process must be made. The opportunity now exists to take advantage of recent developments in

information technology to streamline the design process so that information can flow seamlessly

between applications, across heterogeneous operating systems, computing architectures

programming languages, and data and process representations.

The World Wide Web has emerged as a powerful mechanism for distributing information on a

very large scale. In its current form, it provides a simple and effective means for users to search,

browse, and retrieve information, as well as to publish their own information. The Web continues

to evolve from its limited role as a provider of static document-based information to that of a

platform for supporting complex services. Much of this transformation is due to the introduction

of object technologies, such as Java and CORBA (Common Object Request Broker Architecture)

[36] within the Web. The integration of object technology represents a fundamental (some would

say, revolutionary) advancement in web-technology. The web is no longer simply a document

access system supported by the somewhat limited protocols. Rather, it is a distributed object

system with which one can build general, multi-tiered enterprise intranet and internet

applications.

NASA/TM--2000-209953 2



The integrationof the Weband objecttechnologyenablesa fundamentallynew approachto

simulation: Web-based simulation. A Web populated with digital objects -- models of physical

counterparts --will lead to model development by composition using collaborative Web-based

environments [9]. Model execution will occur across networks using Web-based technologies

(e.g., Java) and distributed simulation techniques (e.g., CORBA). Finally, simulation execution,

models, and other related data will be documented using forms of hypermedia (hypertext, video,

virtual models, etc.).

Web-based simulation has the potential to provide the necessary tools to improve the aircraft

design process through integration and support for collaborative modeling and distributed model

execution. In the remainder of this paper, we examine how this might be achieved. In Section 2,

we provide a brief overview of the aircraft design process, drawing attention to the complexities

of the process and its inherent problems. Section 3 provides a review of the area of Web-based

simulation, and singles out several principles of Web-based simulation that we believe are

important in the aircraft design process. In Section 4, we present an example scenario illustrating

how Web-based modeling and simulation might be used in that process, and discuss aircraft

model development and distribution using the Onyx simulation framework. Onyx's object-

oriented component model, visual environment for model assembly, and support for both Web-

based and distributed object execution are explained in context of the integration of a jet engine

within the aircraft. Lastly, in Section 5, the relationships to the Web-based simulation principles

outlined in Section 3 are identified and discussed, as are general implications of Web-based

simulation on the design process.

2 The Aircraft Design Process

The aircraft design process can be divided into three phases: conceptual design, prelimina_y

design, and detailed design. The conceptual design phase identifies the various conditions of the

mission, and synthesizes a set of initial aircraft configurations capable of performing the mission.

For commercial aircraft, the mission is defined by airline company demands, which typically

NASA/TM--2000-209953 3



includepayloadrequirements,city-to-city distancealongaproposedserviceroute, traffic volume

andfrequency,andairportcompatibility.If theconceptualdesigneffort confirmsthefeasibilityof

theproposedmission,managementmaydecideto proceedwith oneor morepreliminarydesigns.

In thepreliminary designphase,moredetail is addedto the aircraft designdefinition. Here the

aerodynamicshape,structuralskeletonandpropulsionsystemdesignare refinedsufficiently so

that detailedperformanceestimatescanbemadeandguaranteedto potential customers.In the

final designphase,the airframestructureand associatedsub-systems,suchascontrol systems,

landinggear,electrical andhydraulic systems,andcabin layout, aredefinedin completedetail

[17].

The designof an aircraft is an inherentlycomplexprocess.Traditional preliminary design

proceduredecomposestheaircraftinto isolatedcomponents(airframe,propulsionsystem,control

system,etc.) and focusesattentionon the individual disciplines (fluid dynamic,heat transfer,

acoustics,etc.)which affect their performance.The normalapproachis to performdisciplinary

analysisin a sequentialmannerwhereone disciplineusesthe resultsof the precedinganalysis

(seeFig. 1). In the developmentof commercialaircraft,aerodynamicanalysisof the airframeis

the first stepin thepreliminarydesignprocess.Using theinitial Computer-aidedDesign(CAD)

geometrydefinitions resulting from the conceptualdesignstudies,aerodynamicpredictionsof

wing andfuselagelift anddragarecomputed.Keypointsin theflight envelope,includingtake-off

andnormalcruise,areevaluatedto form a mapof aerodynamicperformance.Next,performance

estimatesof theaircraft'spropulsionsystemaremade,including thrustandfuel consumptionrate.

Thestructuralanalysisusesestimatesof aerodynamicloadsto determinetheairframe'sstructural

skeleton,whichprovidesanestimateof thestructureweight.

Complicating the designprocessis the fact that each of the disciplinesinteractsto various

degreeswith theotherdisciplinesin theminor analysisloop.For example,thethrustrequirements

of thepropulsionsystemwill bedependenton theaerodynamicdragestimatesfor take-off,climb

and cruise.Thevaluesof aerodynamiclift andyaw momentsaffect the sizing of the horizontal

andvertical tail, which in turn influencethedesignof thecontrol system.For anefficientdesign

NASA/TM--2000-209953 4



process,fully-updateddatafrom onedisciplinemustbe madeaccessibleto the otherdisciplines

without lossof information.Failureto identify interactionsbetweendisciplinesearlyin theminor

designcyclecanresultin seriousproblemsfor highly integratedaircraftdesigns.If thecouplingis

not identified until the systemhasbeenbuilt and testedexperimentally,then the systemmust

undergo another major cycle iteration, further increasingthe time and expenseof product

development.

Therearemanyfactorsthatcanmakethedesignprocesslessefficient.Theseinclude:

(1) l_xtck of interoperability. Numerous software packages- CAD, solid modeling, FEA,

CFD, visualization, and optimization -- are employed to synthesize and evaluate designs.

These tools are often use different, possibly proprietary, data formats. As a result, they

generally do not interoperate, and require manual manipulation when passing data

between applications. Although in some cases, custom translation tools are available to

"massage" the data into the appropriate format, users still spend considerable time and

effort tracking data and results as well as preparing, submitting and running the computer

applications [28].

(2) Heterogeneous computing environments. The aircraft design computing environment is

extremely heterogeneous, with platforms ranging from personal computers, to Unix work-

stations, to supercomputers. To use the various software required in the design process,

users are forced to become familiar with different computer architectures, operating sys-

tems and programming languages.

(3) Geographically separated design groups. Multidisciplinary design and analysis is fre-

quently carried out by geographically dispersed engineering groups. In special cases,

entire subsystems may be designed and developed by third-party contractors or compa-

nies. The propulsion sub-system, for example, is designed and built separately by the pro-

pulsion company, and delivered to the aircraft company for installation in the aircraft. In

any case, geographic separation places pressure on the designers to maintain a high level

of interaction during the design process so that loss of data is minimized.

NASA/TM--2000-209953 5



Improving the design process, therefore, requires the development of an integrated software

environment which provides interoperability standards so that information can flow seamlessly

across heterogeneous machines, computing platforms, programming languages, and data and

process representations. We believe that web-based simulation tools can provide such an

environment.

3 Principles of Web-based Simulation

Since its inception in 1990, the World Wide Web (WWW or Web) has quickly emerged as a

powerful tool for connecting people and information on a global scale. Built on broadly accepted

protocols, the WWW removes incompatibilities between computer systems, resulting in an

"explosion of accessibility" [2, 30]. Within the simulation community this proliferation has led to

the establishment of a new area of research -- Web-based simulation -- involving the exploration

of the connections between the WWW and the field of simulation. Although the majority of work

in web-based simulation to date has centered on re-implementation of existing distributed and

standalone simulation software using Web-related technologies, there is growing

acknowledgement that web-based simulation has the potential to fundamentally alter the practice

of simulation [11 ].

In one of the first papers to explore the topic of web-based simulation, Fishwick [8] identifies

many potential effects of web-based simulation, with attention given to three key simulation

areas: (1) education and training, (2) publications, and (3) simulation programs. He concludes that

there is great uncertainty in the area of Web-based simulation, but advises simulation researchers

and practitioners to move forward to incorporate Web-based technologies. Building on Fishwick's

observations, Page and Opper [25] present six principles of web-based simulation which capture

the vision of future simulation practice: (1) digital object proliferation, (2) software standards

proliferation, (3) model construction by composition, (4) increased use of "trial and error"

approaches, (5) proliferation of simulation use by non-experts, and (6) multi-tier architectures and

multi-language systems.

NASA/TM--2000-209953 6



In theremainderof this section,webriefly review severalof theseprinciples.In thefollowing

sections,wewill examinein moredetailhow eachapplyto both thedevelopmentof a simulation

environment,andto theimprovementof theaircraftdesignprocess.

3.1 Digital Objects.

In the mid 1960's a pioneering simulation language called Simula-67 [3] was developed to

more faithfully model objects in the physical world. Simula-67 introduced many of the core

design concepts (e.g., classes and objects) which form the foundation for the object-oriented

programming paradigm. Since that time, object-oriented technologies, such as object-oriented

programming (OOP), design (OOD) and analysis (OOA), have had a major impact on the field of

simulation. Today, the majority of simulation languages, as well as many of the most successful

general purpose-languages, are object-oriented.

The importance of objects in simulation applications naturally leads us to consider their use as

part of the WWW infrastructure. The WWW, however, is currently based on documents, rather

than objects. In the future, though, it is envisioned that the Web will be populated by digital

objects, with documents being just one type of object. The objects, representing models and data

for use in simulation environments, will be made available for use through publication on the

WWW [9].

Indications of a transition to an object-based WWW are currently evident in the successful

application of mobile code and distributed object technologies. Mobile code -- programs which

can be transmitted across a network and executed on the client's computer-- make it possible to

deliver digital objects, in either executable or serialized form across the WWW. Several

programming languages which can produce mobile code have been developed [4, 32, 33, 34]; the

most well known and widely supported is Java [1]. Compiled Java code, known as byte-code, can

be downloaded across the Web to the client where it is executed by a Java Virtual Machine. The

Java run-time system, incorporated within the Java Virtual Machine, provides an extensive class

library that can be accessed by the compiled code.

NASA/TM--2000-209953 7



Digital objects are also incorporated within the WWW infrastructure as part of distributed

simulation execution using distributed technologies, such as CORBA (Common Object Request

Broker Architecture), Java Spaces [12], Distributed Component Object Model (DCOM) [6] or

Java Remote Method Invocation (RMI) [35]. These technologies provide flexible communication

and activation substrates which allow objects to be stored and executed at remote locations in the

WWW's heterogeneous environment.

3.2 Model Construction by Composition

Object composition -- obtaining new functionality by assembling a new object from other

objects -- is a key feature of the object-oriented paradigm. In the last decade, component-based

technologies have emerged which utilize object composition (and other existing object-oriented

features) to create reusable, "off-the-shelf" sofm,are components which can be combined at run-

time to form complex applications. In a Web populated by digital objects, we can expect a similar

approach which would enable the creation of complex models by composition. Web-based

graphical environments will permit rapid visual assembly or modification of simulation models

with a minimum effort. Due to their well-defined interfaces, these digital objects are highly

modular, making them well-suited for placement across computer platforms as part of distributed

simulations.

3.3 Digital Object Interoperability

In order to employ object composition as part of the Web-based simulation process, it is

critical that digital objects interoperate. Enforcement of digital object interoperability is the

responsibility of the object's component architecture, which defines standard interfaces for all

objects. These interfaces make it possible to customize a simulation by replacing an object with

another object having similar functionality. This capability, Which is sometimes referred to as

"plug 'n play" or "pluggability," is essential for composing and reusing simulation models.

The selection of a component architecture is dependent on several criteria, including the

programming language and operating system used, and whether or not the object is to be

distributed. Existing component architectures include: the CORBA, JavaBeans [7], Microsoft

NAS A/TM----2000-209953 8



ComponentObjectModel (COM) [29], and High Level Architecture (HLA) [21 ]. Alternatively, a

component architecture may be defined by the particular simulation application in which the

objects are to operate. This is often the case in domain-specific simulation environments, where

the component architecture must be crafted to meet specific requirements of the domain. The

Onyx simulation environment, described in the following section, is such an example; it defines a

component architecture which is oriented towards physical modeling of aerospace systems.

3.4 Heterogeneous Modeling and Simulation

The digital objects of our Web-based simulation future will populate a Web that is highly

heterogeneous. Digital objects will certainly be developed using different programming languages

and programming styles (e.g., object-oriented, procedural, functional, etc.). The digital objects

will themselves be highly variable. Some will be based on mobile code which can move across the

Web (e.g., agents), while others will form object busses which provide services from specific

locations on the Web. Applications will become more complicated as a result, with complex

multi-tier architectures becoming the standard. In order to operate effectively in such an

environment, Web-based simulation will need extensive enabling technologies such as search

engines to locate appropriate digital objects and models, translators to convert models and data to

appropriate formats, and expert systems to guide non-experts in the use of Web-based simulation

models.

4 An Example Scenario

In this section, we present a scenario illustrating how Web-based modeling and simulation can

be used in the aircraft design process. Our goal is to discuss both the technical issues related to the

design, development and publication of digital objects, as well as organizational issues

concerning the roles engineers and programmers play in the Web-based design process. Although

the discussion is oriented towards the aircraft design process, we believe that it is applicable to

engineering processes used in many fields.

NASA/TM--2000-209953 9



4.1 Onyx
Themodelingandsimulationenvironmentfor our researchis theOnyx simulation system [26,

27]. The major features of Onyx include the following.

• A set of object classes and interfaces for representing the physical attributes and topology of

the aircraft system is included. These classes comprise an object-oriented component architec-

ture capable of housing the analytical and geometric views of the various aircraft components

employed in the design process. The architecture facilitates and ensures object interoperability

among separately developed software components.

• A visual assembly hTtetface is included for graphical creation and manipulation of aircraft

system models. It enables users to establish model design, control model execution and visu-

alize simulation output.

• A dynamically-defined, run-time simulation executive is included to control complex, multi-

level simulations.

• A persistence engine capable of transparently accessing geometry and data stored in either

relational or object database management systems is included.

• A connection sen, ice provides access to federated model and data repositories using standard

internet protocols. Various connection strategies to access Web- and server-based distributed

objects are included.

Our goal in creating Onyx is to develop a simulation-based design system that promotes

collaboration among aerospace designers and facilitates sharing of models, data and code. Special

emphasis is placed on developing a distributed system which fosters reuse and extension in both

the models and the simulation environment. To achieve these goals, we have made extensive use

of object-oriented technologies such as object-oriented frameworks, software components, and

design patterns.

An object-oriented framework is a set of classes that embodies an abstract design for solutions

to a family of related problems [19]. Onyx is designed as a layered collection of frameworks, with

individual frameworks for the visual assembly interface, persistence engine, connection services,

NASA/TM--2000-209953 10



simulation executive and component architecture. The set of classes in each framework define a

"semi-complete" structure that captures the general functionality of the application or domain.

Specific functionality is added to Onyx by inheriting from, or composing with, framework

components. In the example in the next section, we will illustrate this by deriving new classes to

represent the components in an aircraft engine, then assembling instances of those classes to form

a complete engine model.

A key characteristic of Onyx, and object-oriented frameworks in general, is its inverted control

structure. In traditional software development, the application developer writes the main body of

the application which defines a series of calls to various libraries of subroutines. These libraries

provide reusable code, while the main body is customized by the application developer. In

framework design, the control structure is defined by the framework, with predefined calls going

to methods that the application developer writes. In this approach, the design or structure of the

application --which is domain-specific --is reused, and the specific functionality of the

application is provided by the developer. Using this approach, Onyx reduces the burden for

aircraft engineers and modelers, allowing similar aircraft component models to be developed

faster and more efficiently. The concept of reuse is best illustrated for models that are assembled

from a library of components (i.e., composition), and for models that are made in several versions

with minor differences (i.e., inheritance).

A major product of object-oriented design is the identification of software components -- self

contained software elements which can be controlled dynamically and assembled to form

applications. The central step in identifying them is recognizing recurring fundamental

abstractions in the domain. By identifying these abstractions and standardizing their interfaces,

these components become interchangeable. Such components are said to be "plug-compatible" as

they permit components to be "plugged" into frameworks without redesign. Onyx's software

components use a variant of the JavaBeans [7] component architecture to define standard

interfaces and abstractions. These components represent the "plug-compatible, digital objects"

with which the Web-based models of the aircraft and its subsystems are developed.

NASA/TM--2000-209953 11



Throughout the Onyx environment, design patterns- recurring solutions to problems that arise

when building software in various domains [13] --are used to achieve reuse. Patterns aid the

development of reusable software components and frameworks by expressing the structure and

collaboration of participants in a software architecture at a level higher than source code or object-

oriented design models that focus on individual objects and classes [31]. Patterns also are

particularly useful for documenting software architectures and design abstractions. They provide

a common and concise vocabulary which is useful in conveying the purpose of a given software

design.

The Onyx simulation environment is designed to be both multi-tiered and platform

independent so as to provide the greatest flexibility when modeling complex aircraft systems. Java

was chosen as the implementation language as it offers extensive class libraries, a distributed

object model (i.e., Java RMI), and byte-code interpreters on a wide range of computer

architectures, among other benefits. As a result, the Onyx system is extremely portable and

accessible. The visual assembly interface (described below), for example, can be run in the

context of a Web browser, which are widely available, while computationally intensive

components run on dedicated, distributed servers.

Java is also the preferred language for programming Onyx software components, as models

written in Java are easily downloaded across a network and dynamically loaded into the Onyx

environment. In cases where it is desirable or necessary to use a programming language other than

Java, software components may be accessed from Onyx using CORBA. CORBA's ability to deal

with the heterogeneous nature inherent in distributed computing environments makes it

particularly suitable for leveraging legacy applications not written in Java. This is especially

useful for simulation of aerospace systems in which the majority of existing analysis programs

have been written in procedural languages, such as FORTRAN and C. The use of CORBA adds

flexibility to the Onyx system allowing it to "wrap" these existing programs, rather than having to

replace or abandon them.

NASA/TM--2000-209953 12



4.2 Engine-Aircraft Integration Scenario

This scenario illustrates our vision of how Web-based modeling and simulation may be used in

the process of development and integration of an aircraft subsystem within the complete aircraft.

As stated earlier, the aircraft design process generally follows a hierarchical decomposition of the

aircraft system (see Fig. 2a) into major airframe components, e.g., Fuselage, Rudder, Wing and

Propulsion System (i.e., Engines). Individual engineering groups are responsible for establishing

the conceptual and preliminary designs for each respective component. These teams work

together, exchanging information as necessary, to develop the individual component designs, and

as the process progresses, to integrate them into a final design.

We have selected for our example the integration of the propulsion subsystem into the aircraft

because it represents one of the more complex aspects of aircraft design. Propulsion system

performance, size and weight are important factors in the overall aircraft design. Engine size and

thrust, for example, influence the number and placement of engines, which in turn affects aircraft

safety, performance, drag, control and maintainability. Furthermore, because the engine is

designed and developed by an external manufacturer- i.e., an engine company --this example

illustrates the challenges faced by designers separated both geographically and organizationally.

We intend to show how Web-based modeling and simulation can address these and other issues.

4.2.1 Model Authoring. As in the aircraft company, engineering design groups in the engine

manufacturer are generally organized according to a physical decomposition of the engine, with

individual teams responsible for developing the major engine components: Fan, Compressor,

Combustor, Turbine, Mixer, etc. (see Fig. 2b). In each team, a model author, having expertise in

the given design area, establishes a conceptual model of the component. During early phases of

design, model resolution is kept relatively coarse to speed simulations and enable more complete

exploration of the design space. Such a model typically consists of a set of algebraic and/or

linearized ordinary differential equations which describe the component's gross behavior. At this

stage in the design knowledge of component characteristics is incomplete, so empirical data

gathered from rig-testing of previously developed components are scaled to approximate the

NASA/TM_2000-209953 !3



current model. These data, commonly referred to as "performance maps," attempt to capture

component characteristics within their operating range, and serve to provide closure to the

equations.

4.2.2 Component Authoring. Once a conceptual model is validated, a component authoJ,

working closely with the model author, maps the model to the computational domain, creating a

software component which encapsulates the model abstraction. As pointed out in section 3, the

mapping is largely dependent on the choice of component architecture being used. The Onyx

component architecture used here is based upon a control volume abstraction. The use of control

volumes is standard engineering practice, wherein the physical system is divided into discrete

regions of space -- control volumes -- which are then analyzed by applying conservation laws

(e.g., mass, momentum, energy) to yield a set of mathematical equations describing physical

behavior (see Fig. 3). A component architecture predicated on this approach provides a

convenient and familiar mapping mechanism for modeling physical systems, and ensures that a

simulation component resembles the conceptual model developed by the model author. A brief

overview of the Onyx component architecture is presented below; a complete description can be

found in ref. [26].

4.2.3 Overview of Onyx Component Architecture. There are four basic entities in the Onyx

architecture: Element, Port, Connector and DomainModel (see Fig. 4). The Java interface

Element represents a control volume, and defines the key behavior for all engineering

component classes incorporated into Onyx. It declares the core methods needed to initialize, run

and stop model execution, as well as methods for managing attached Port objects. Classes

implementing this interface generally represent physical components, such as a compressor,

turbine blade, or bearing, to name a few (see Fig. 3b). However, they may also represent purely

mathematical abstractions such as a cell in a finite-volume mesh used in a CFD analysis. This

flexibility permits the component architecture to model a variety of physical systems.

Consider, for example, a component author in the Compressor design team wanting to develop

a representative Compressor digital object for use in simulations during preliminary design. The

NASA/TM--2000-209953 14



author begins by defining a concrete implementation of the Element interface, such as

SimpleCompressor (see Fig. 4). Here the author extends the abstract class DefaultElement,

which captures common implementation aspects of the Element interface, as well as maintaining

a list of Port objects associated with its subclasses. Alternatively, the author could implement the

interface directly, explicitly defining each interface method. This feature is used through the

architecture to provide flexibility: the component author may select to utilize the default

functionality of the common abstract class, or inherit from another class hierarchy and implement

the interface directly.

An Element may have zero or more Port objects associated with it. The interface Port

represent a surface on a control volume (i.e., Element) through which some entity (e.g., mass or

energy) or information passes. Ports are generally classified by the entity being transported

across the control surface. For example, the SimpleCompressor has two FluidPort objects --

representing the fluid boundaries at the Compressor entrance and exit -- and a StrueturalPort

object, representing the control surface on the Compressor through which mechanical energy is

passed (i.e., from a driving shaft). The Port interface defines two methods to set and retrieve the

data defined by the Port. These data may be stored in any type of Java Object, such as Itashtable

or Vector. The common abstract class, DefiiultPort, defines default functionality for these

methods, and maintains a reference to the Connector object currently connected to the Port.

The common boundary between consecutive control volumes is represented by a Connector

object. The interface Connector permits two Element objects to communicate by passing

information between connected Port objects (see Fig. 3c). It is also responsible for data

transformation and mapping in situations where the data being passed from Ports of different

type. The need for such data transformation can range from simple situations, such as conversion

of data units, to very complex ones involving a mismatch in model fidelity (e.g., connecting a 2-D

fluid model to a 3-D fluid model) or disciplinary coupling (e.g, mapping structural analysis results

from a finite-element mesh to a finite-volume mesh used for aerodynamic analysis).

NASA/TM--2000-209953 15



For all but the simplestcases,the algorithmsneededto perform the data transformation/

mapping will tend to be very complex. To improve reusability, Connector delegates

transformation/mappingresponsibilitiesto a separateTransform object (see Fig. 3c) which

encapsulates the necessary intelligence to expand/contract data and map data across disciplines.

The Transfi)nn interface (see Fig 4) defines a general method, transform, which is implemented

by subclasses to carry out a particular transformation algorithm.

A similar situation is found with the mathematical model used to define component behavior.

As described above, the mathematical models used to describe Compressor (or any other

component) behavior during preliminary design are relatively simple and may be solved

analytically or using basic numerical methods. However, models used in latter phases of design

can be quite complicated. In these cases, approximate solutions are obtained by discretization of

the equations on a geometrical mesh and applying highly specialized numerical solvers. The

presence of these complex mathematical models and the numerical tools needed to solve them

suggest that it is desirable to encapsulate these features and remove them from the Element

structure. This enhances the modularity of Element, allowing new Element classes to be added

without regard to the mathematical model used, and conversely to add new models without

affecting the Element class. To achieve this, Onyx utilizes the Strategy design pattern [13] to

encapsulate the mathematical model in a separate type of object called DomainModel (see Fig.

4). The benefit of this pattern is that families of similar algorithms become interchangeable,

allowing the algorithm -- in this case the DomainModel -- to vary independently from the

Elements that use it. This admits the possibility of run-time selection of an appropriate

DomainModel for a given Element; however, this is currently not used in Onyx. Furthermore,

encapsulating the DomainModel in a separate object also encourages the "wrapping" of pre-

existing, external software packages. For example, the Fan DomainModel in Fig. 3d might

"wrap" a three-dimensional (3-D) Navier-Stokes or Euler flow solver to provide steady-state

aerodynamic analysis of fluid flow within the Fan. This approach allows proven functionality of

NASA/TM--2000-209953 16



existing softwareanalysispackagesto be easily integratedwithin an Element.Someof the

advantagesof thisconceptis illustratedlaterin this section.

TheDomainModcl interfaceis designedto beverygeneral,dueto thecomplicatednatureof

the variousmodelswhich mightbeencapsulatedin anElement. Theintent is not to restrict the

useof any algorithmor the "wrapping" of externalsoftwarepackagesby overly defining the

DomainModel interface.Consequently,the interfacedefinesonly two methods,executeandhalt,

whichareusedto startandstoptheexecutionof theDomainModel code.Additional methodsare

obviously neededto accessand make the data internal to the DomainModel availableto the

Element, butbecausethesearespecificto theparticularDomainModel structure,theyarenot

included in the interface. For our example, the component author has defined a

SimplcCompressorModel class (seeFig. 4) to encapsulatethe set of ordinary differential

equationsandperformancemapsneededto modelcompressorbehavior.

After theCompressorclassdefinitionsd.e.,SimpleCompressor, FiuidPort, StrueturalPort

and SimpleCompressorDomainModel) are established,the componentauthor compiles,

verifiesandteststheir operation.Whencomplete,theclass'byte-codefiles andanyauxiliary data

(e.g.,performancemaps)arecombinedto form a singleCompressorsoftwarecomponentin the

form of a JavaArchive (JAR)file. TheJARfile formatis usefulfor encapsulatingcomponentsas

they can be compressedto reduce file size, digitally signed for addedsecurity, and easily

transferredacrosstheWeb.

4.2.4 Publishing the Component. The Compressor software component is "published" by

deploying it on a Web server where it can be accessed by others in the engine company. We

envision that each engine component design team will maintain its own Web server, hosting the

software components it has developed (see Figure 5). However, it may be easier and more

efficient to maintain all components on a single company-wide Web server. In either case,

publishing the software component is the responsibility of the component deployel, who has

expertise in system and Web server administration. This expertise is necessary, since, in addition

NASA/TM_2000-209953 17



to simply placing componentson a Web server,the componentdeployer is responsiblefor

addressingserverconfigurationissuesof componentidentificationandsecurity.

4.2.5 Accessing Components. One of the problems facing a user of a Web-based simulation

system is locating appropriate software components, objects or data, for use in a simulation, A

text-based search engine, similar to those used on the Web today, is one possible method to find

objects and components [9]. However, these tools suffer from the fact that they are oriented

towards HTML documents, rather than objects. A more object-oriented approach is to use naming

and director3, services to catalog available simulation objects and components. Using a naming

service, the component deployer associates names with objects, providing the means to took up an

object given its name. CORBA and RMI are examples of distributed object systems that employ

naming services. Directory services extend naming services by adding attributes, making it

possible to search for objects given their attributes. These attributes may be used by the

component deployer to describe and hierarchically organize each component. For example, the

attributes may be specified which describe the component class name, model fidelity and

discipline, model author, or version number, as well as the manufacturer's name and component

group, to name a few. Queries can be made to the directory service to find and return references to

objects matching one or more attributes. Lightweight Directory Access Protocol (LDAP) [38] and

NetWare Directory Service (NDS) [23] are examples of directory services which are used today.

Another important responsibility of the component deployer is establishing and maintaining

security policies controlling access to published software components. These components

represent significant investments in both time and money for the manufacturer. To protect their

intellectual property against theft through reverse engineering, it is important to ensure that

relevant data and software components can only be accessed by authorized users. Protection is

accomplished through the use of authentication and authorization mechanisms. Authentication

refers to the presence of an authentication protocol (e.g., password, Kerberos ticket [24],or public

key certificate (X.509 [16], PGP [39], etc.) that identifies the requesting party (the principle),

while authorization grants access only if the principles identity (credentials) is included in a

NASA/TM--2000-209953 18



specific list (the accesscontrol list), or if the principle canassumea specificrole (role-based

authorization).Both authenticationandauthorizationmechanismsaretypically includedaspartof

thenaminganddirectoryservices,or aspartof theWebserverservices.Usingthesemechanisms,

thecomponentdeployercancontrolwhogainsaccessto theserver,andwhatdatacanberead.

Communicationchannelsbetweena client andthe Web serverarealso a sourceof security

concern.If the communicationchannel is a dedicatednetwork connection(i.e., intranet or

extranet), security problems are minimized due to physical isolation. If, however, the

communicationchannelis theWeb,physicalisolationis impossible,andencryptionmechanisms,

suchasSecureSocketLayers(SSL) [15],mustbeused.

4.2.6 Building the Engine. Once the engine component design teams publish their preliminary

component objects, a system integrator, having expertise in system-level engine design, combines

individual component objects to create a first-order engine model. The system-level engine model

is developed using Onyx's visual assembly interface. Icons, representing individual engine

components (i.e., Elements), are selected from a component browser, dragged into a workspace

window, and interconnected to form a schematic diagram (see Fig. 6).

The component browser, as its name implies, is a tool for browsing the objects and data stored

in a naming or directory service (see bottom-right corner of Fig. 6). Onyx currently supports

access to common naming and directory services, such as NDS, LDAP, CORBA Naming Service

(COS Naming), and RMI Registry, through the Java Naming and Directory Interface (JNDI) [ 18].

JNDI is an API that provides an abstraction that represents elements common to the most widely

available naming and directory services. JNDI also allows different services to be linked to

together to form a single logical namespace called a federated naming service. Using the

component browser, Onyx users are ale to navigate across multiple naming and directory services

to locate simulation data, objects and components.

For security purposes, the component browser requires users to authenticate themselves before

they can retrieve any information from a naming or directory service. Once authentication has

been successfully completed, the user can browse or search (using attribute keywords) the entire

NASA/TM--2000-209953 19



namespace(subject to any authorization restrictions). Authentication and authorization

capabilitiesare providedthroughJNDI and the JavaAuthenticationand Authorization Service

(JAAS) [22] framework.Thesetoolsallow the componentbrowserto remainindependentfrom

theunderlyingsecurityservices,which is an importantconcernwhenworking in aheterogeneous

computingenvironmentsuchastheWeb.

Draggingan icon from the componentbrowserto the workspacewindow causesthe selected

softwarecomponent to be downloadedfrom the server to the client machine.Components

comprisedentirelyof Javaclasses,suchastheCompressordescribedabove,aredownloadedfrom

aWebserverto the local file systemwherethebyte-codesareextractedfrom theJARfile, loaded

into the JavaVirtual Machineandinstantiatedfor usein Onyx. Componentsdevelopedin other

programminglanguagesarenot downloaded,but remainon the server.Instead,a proxy object

(stub),representingthecomponent,is downloadedandusedto connectto theremotecomponent

usinga distributedobject service,suchasRMI, Voyager[37], CORBA, or DCOM. The needto

useremotecomponentsin theaircraftdesignprocessis discussedat theendof this section.

Onyxsupportsthecreationof hierarchicalcomponentmodels,andan iconcanrepresentbotha

singlecomponentor anassemblyof components.A componentwith subcomponentsis calleda

composite or structured component. Components that are not structured are called primitive

components, since they are typically defined in terms of primitives such as variables and

equations. Composite components are represented by the CompositeElement class, which is

part of the Element hierarchy (see Fig. 4). The class structure, based on the Composite design

pattern [13], effectively captures the part-whole hierarchical structure of the component models,

and allows the uniform treatment of both individual objects and compositions of objects. Such

treatment is essential for providing the object interoperability needed to perform Web-based

model construction by composition.

Figure 6 shows a composite model representing an aircraft turbofan engine. The icon labeled

Core is a composite of components which are displayed in the lower schematic. Each icon has one

or more small boxes on its perimeter to represent its Ports. Connecting lines are drawn between

NAS A/TM----2000-209953 20



the ports on different icons by draggingthe mouse.A Connector object having the correct

Transform objectneededto connectthe two ports is createdautomaticallyby Onyx.Eachicon

has a popup menu which can be used"customize" the attributesof its Element, Port and

DornainModel objects.Whenselected,a graphicalCustomizer objectis displayed(seeupper-

fight cornerof Fig. 6), which canbeusedto view or edit theselectedobjectsattributes.Thevisual

assemblyinterfacealsoprovidestools for plotting (seethe lower-left corner of Fig. 6), editing

files, andbrowsingon-line documentation.More informationon the designandimplementation

of thevisualassemblyinterfacecanbe foundin ref. [26].

4.2. 7 Eng#ze-Aircraft Model Integration. The system integrator, working with the model and

component authors, performs a series of simulations to evaluate and improve the performance of

the first-order engine model. Component conceptual models are refined and new software

components developed, deployed and integrated, until all preliminary engine design requirements

are satisfied. The engine model is then "passed" to engineers in the aircraft design group for use in

their design process. This is accomplished by publishing the engine model as a

CompositeEIement object in the same process as described above, except that the engine

component is deployed on a Web server accessible from networked locations outside the engine

company (i.e., extranet). In the aircraft company, airframe designers use the preliminary engine

component (now a sub-component in the airframe system model) to design the control system,

size the airframe and design the planform (see Fig 5). An aircraft system integrator takes the

engine component and, using the Onyx visual assembly interface, assembles an airframe model

using components (e.g., rudder, fuselage, and wing) developed by aircraft design groups (see Fig.

6) in a process similar to the one described for the Compressor component. This model can then

be used to simulate gross aircraft performance.

4.2.8 Hierarchical Models. While the preliminary engine component is being used by the

aircraft design teams, the engine component teams continue to refine their designs. The

refinement requires sophisticated models which give a detailed description of the underlying

physical processes within the component. For instance, although the air flow through the

NASA/TM--2000-209953 21



Compressormight be adequatelymodeledas a quasi-one-dimensional,inviscid fluid in early

phasesof design,theactualfluid flow is unsteady,three-dimensional(3-D) andcharacterizedby

turbulence,boundary-layersand shocks.Similarly, at an early stageof designthe Compressor

bladescan be modeledas rigid, but for more detailed investigationsit may be necessaryto

accountfor bladedeformationdueto materialelasticityandthermalloading.Thus,simulatingthe

behavior of complex componentsrequires the developmentof a hierarchy of models, or

mtdtimodel, which represent the component at differing levels of abstraction [10]. These models

may include: lumped-parameter models, such as the one used to model the Compressor

component in preliminary design, or distributed parameter models such as fluid dynamics (CFD)

or structural mechanics (FEA). Each model is implemented using a numerical method best suited

to the application; e.g., an ordinary differential equation solver (ODE) for state-space models,

finite-element solvers for structural mechanics or finite-volume solver for fluid dynamics. The

specific numerical method implementation is encapsulated within the model. Figure 2c shows a

rnultimodel representing the Compressor blade and flowfield at differing levels of fidelity. At the

lowest level of fidelity, both the blade and flowfield are modeled using simple differential

equations and empirical data. At higher fidelities, both are modeled using sophisticated numerical

methods such as finite element analysis or computational fluid dynamics.

4.2.9 High-futelity Distributed Components. The use of multimodels in Web-based modeling

and simulation is important because it allows designers to selectively refine the fidelity of their

model given the constraints (i.e., level of detail needed, the objective, the available knowledge,

given resources, etc.) of the simulation. However, digital objects containing higher-fidelity models

cannot be deployed in the same manner as the simple models described previously. High-fidelity

CFD and FEA software packages are (generally) not written in Java, and thus cannot be run in the

clients Java virtual machine. Even if this were possible, the packages are computationally

intensive, making them unsuitable for execution on the client computer. Therefore, high-fidelity

models are deployed as remote objects using distributed object services such as CORBA. This

approach offers several advantages:

NASA/TM--2000-209953 22



(1) Ability to distributeacomputationallyintensiveprocessacrossanumberof processors

(2) Ability to leveragelegacycodelimited to platformsoffering specificprogrammingand/or

operatingsystemsby "wrapping"it in aremoteobject

(3) Specializationof computerexecutionenvironment(i.e.,placementof codesonappropriate

computingplatforms;suchasvisualizationcodesonhigh-endgraphicworkstations;com-

putationallyintensivecodesonsupercomputers,etc.).

As with thepreliminarycomponentmodels,thehigh-fidelitycomponentmodelscanbeintegrated

into a system-levelenginemodelby the enginesystemintegrator,and usedto simulateengine

operation.An enginesimulation using a model composedof high-fidelity componentswould

provide detailedknowledgeof the interactioneffectsbetweenits components.Although these

interactionscanbecritical to engineperformance,they arenot currently quantifiableby engine

designersandthereforeareunknownuntil afterexpensivehardwaretesting[5, 14].Evaluationof

theseeffectswill allow engineengineersto makebetterdesigndecisionsearlier in the design

process,before the principle designfeatureshavebeenfrozen. Eachhigh-fidelity component

wouldperformits computationsusingawrappedanalysispackagelocatedononeor moreremote

computers.For example,in Fig. 5, theFancomponentis runona supercomputer,while aparallel

softwarepackageis usedto simulateCompressoroperationusingaclusterof computers.

The high-fidelity enginemodelis alsoa valuableresourceto aircraft designers,and oncethe

modelis published,canbeusedin theaircraftmodel.Theenginemodelallowsaircraftdesigners

to investigatethe flowfield aroundaircraftnacelle(thecowling structurearoundtheengine)and

fuselage.Detaileddescriptionsof flow featuresat the engineexit (e.g., shocksand expansion

waves),could allow aircraftdesignersto betterpredictthedragcausedby thejet exhaustflowing

along the aircraft surface.Enginedesignerswould also benefitfrom a high-fidelity, integrated

engine-aircraftsimulation.For example,anintegratedsimulationcouldallowenginedesignersto

studydistortionsin theairflow enteringthe enginewhentheaircraft is at ahigh angleof attack.

Evaluationof this operatingconditionis importantbecausedistortionscancausethe compressor

to stall andthe engineto losethrust.A detailedengine-aircraftintegrationstudywould provide

NASA/TM--2000-209953 23



valuable information which engine and aircraft engineers could use to better and more quickly

design the aircraft.

5 Concluding Remarks

The design of complex systems involves the work of many specialists in various disciplines,

each dependent on the work of other groups. When a single designer or core team is able to

control the entire design process, difficulties in communication and organization are minimized.

However, as design problems become more complex, the number and size of disciplinary groups

increases, and it becomes more difficult for a central group to manage the process. As the design

process becomes more decentralized, communications requirements become more severe. These

difficulties are particularly evident in the design of aircraft, a process that involves complex

analyses, many disciplines, and a large design space [20]. The lack of enabling software

supporting disciplinary analysis by geographically dispersed engineering groups further

aggravates these problems.

In this paper we have argued that Web-based simulation has the potential to improve the

aircraft design process, allowing companies to become more competitive through condensed

cycle times and better products. This improvement is due, in part, to the ability of the Web to

support collaborative modeling and distributed model execution in a heterogeneous computing

environment. A central focus of this strategy is the move towards a Web based on digital objects

which can be published and reused to form new models.

Using a component architecture such as the one defined in the Onyx environment, digital

objects can be developed which represent the hierarchical topology of physical systems, making

them ideal as models of aircraft systems. Furthermore, these objects can encapsulate multimodels,

including geometry models, multidisciplinary models and models having multiple levels of

fidelity. Such models are ideal for concurrent design environments, since all of the modeling

information is available in one place. The component architecture class structure provides the

NASA/TM--2000-209953 24



capability to wrap existing software packages. This is extremely important in providing

collaborative and integrative environment for the aircraft design process.

A World-Wide Web populated with digital objects provides the foundation for modeling by

composition. Onyx's component architecture defines the standard interfaces needed to

dynamically compose new objects and the visual assembly interface makes composition simple

and easy. This promotes model reuse, as well as reducing new model development time.

The Onyx environment supports the distribution of simulation models across the Web. Both

Web-based model distribution (in the case of Java-based models) and distributed services

approaches (e.g., CORBA, COM) are provided. Each of these increase Onyx's usability, as

models can be placed virtually anywhere. The CORBA bindings make it possible to integrate non-

Java language distributed objects and legacy code. Also, since Onyx is written entirely in Java, it

is portable without modifications to any computing platform which supports the Java Virtual

Machine. Heterogeneous computing support makes the Onyx Web-based simulation system

extremely viable for use in the heterogeneous computing environments typical of aircraft

companies. Most importantly, it allows access to existing legacy codes and access to codes which

must operate on specific architectures or operating systems.

References

[1] Arnold, K. and Gosling, J., 1996, The Java Programming Language, Addison Wesley

Publishing Company, Inc., Reading, MA.

[2] Berners-Lee, T., 1996, "WWW: Past, Present, and Future," Computer, 29(10) p. 69.

[3] Birtwistle, G., Dahl, O., Myhrhaug, B. and Nygaard, K., 1973, Simula beghT, Petrocelli

Charter, New York.

[4] Cardelli, L., 1994, "Obliq: A Language with Distributed Scope," Research Report 122,

Digital Equipment Corporation Systems Research Center, Palo Alto, CA. On-line

document. Available at http:llgatekeeper.dec.com/pub/DEC/SRC/research-reports/abslracts/src-rr-

122. html.

[5] Claus, R. W., Evans, A. L., Lyt]e, J. K., and Nichols, L. D., 1991, "Numerical Propulsion

NASA/TM--2000-209953 25



[6]

[7]

[81

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[191

System Simulation," Computing Systems in Engineering, Vol. 2, pp. 357-364

Eddon, G. and Eddon, H., 1998, Inside Distributed COM, Microsoft Press, Redmond,

Washington.

Englander, R., 1997, Developing Java Beans, O'Reilly & Associates, Inc., Sebastopol, CA.

Fishwick, P.A., 1996, "Web-Based Simulation: Some Personal Observations," Proceedings

of the 1996 Winter Simulation Conference, J.M. Charnes, D.J. Morrice, D.T. Brunner and

J.J. Swaim (eds.), pp. 772-779, Coronado, CA.

Fishwick, EA., 1998, "Issues with Web-Publishable Digital Objects," Proceedings of SPIE:

Enabling Technologies for Simulation Science II, pp, 136-142, Orlando, FL, April 14-16.

Fishwick P. A. and Zeigler, B. E, 1992, "A Multimodel Methodology for Qualitative Model

Engineering," ACM Transactions on Modeling and Computer Simulation, Vol. 12, pp. 52-

81.

Fishwick, EA., Hill, D.R.C. and Smith, R., Eds., 1998, Proceedings of the 1998

International Conference on Web-Based Modeling and Simulation, SCS Simulation Series

30(1).

Freeman, E., Hupfer, S., and Arnold, K., 1999, JavaSpaces TM Principles, Patterns, and

Practice, Addison-Wesley.

Gamma, E., Helm, R, Johnson, R., and Vlissides, J., 1995, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison Wesley Publishing Company, Inc., Reading,

MA.

Hall, E.J., Delaney, R.A., Lynn, S.R. and Veres, J.P., 1998, "Energy Efficient Engine Low

Pressure Subsystem Aerodynamic Analysis," AIAA Paper No. 98-3119.

Hickman, K.E.B., 1995, The SSL Protocol. Available at http://homo.netscape.com/eno/security/

SSL_2.html.

Housley, R., Ford, W., Polk, T., and Solo, D., 1999, "Internet X.509 Public Key

Infrastructure Certificate and CRL Profile. Request for Comments 2459," Internet

Engineering Task Force. Available at http://www.imc.oro/rfc2459.

Jameson, A., 1997, "Re-Engineering the Design Process through Computation," AIAA

Paper No. 97-0641.

Java Naming and Directory Interface. Available at http://java.sun.eom/products/jndi/index.html.

Johnson R. E. and Foote, B., 1988, "Designing Reusable Classes, The Journal Of Object-

NASA/TM--2000-209953 26



Oriented Programming," 1(2), pp. 22-35.

[20] Kroo, I., Altus, S., Braun, R., Gage, E, and Sobieski, I., 1994, "Multidisciplinary

Optimization Methods for Aircraft Preliminary Design," AIAA Paper No. 94-4325.

[21] KuhI, E, Weatherly, R. and Dahmann, J., 1999, Creating Computer Simulation Systems: An

h_troduction to the High Level Architecture, Prentice Hall.

[22] Lai, C., Gong, L., Koved, L., Nadalin, A. and Schemers, R. 1999, "User Authentication And

Authorization In The Java TM Platform," To appear in Proceedings of the 15th Annual

Computer Security Applications Conference, Phoenix, AZ.

[23] Lindberg, K.J.E, 1998, NovelI's Net3vare 5 Administrator's Handbook, IDG Books

Worldwide.

[24] Neuman, B.C. and Ts'o, T., 1994, "Kerberos: An Authentication Service for Computer

Networks," IEEE Communications, 32(9), pp.33-38.

[25] Page, E.H. and Opper, J.M., 1999, "Investigating the Application of Web-Based Simulation

Principles within the Architecture for a Next-Generation Computer Generated Forces

Model," Future Generation Computer Systems, to appear.

[26] Reed, J.A., 1998, "Onyx: An Object-Oriented Framework for Computational Simulation of

Gas Turbine Systems," Ph.D. dissertation, The University of Toledo, Toledo, Ohio.

[27] Reed, J.A., and Afjeh, A.A., 1998, "An Object-Oriented Framework for Distributed

Computational Simulation of Aerospace Propulsion Systems," PJvceedings of the 4th

USENIX Conference on Object-Oriented Technologies and Systems (COOTS), Santa Fe,

New Mexico.

[28] Ridlon, S. A., 1996, "A Software Framework for Enabling Multidisciplinary Analysis and

Optimization," AIAA Paper No. 96-4133.

[29] Rogerson, D., 1996, hTside COM, Microsoft Press, Redmond, Washington.

[30] Schatz, B.R., and Hardin, J.B., 1994, "NCSA Mosaic and the World Wide Web: Global

Hypermedia Protocols for the Internet," Science, 265, p. 895.

[31] Schmidt, D. C., 1997, "Applying Design Patterns and Frameworks to Develop Object-

Oriented Communications Software," Handbook of Programming Languages, Volume I, P.

Salus, ed., MacMillian Computer Publishing.

[32] Smith, R.B., and Ungar, D., 1995, "Programming as an Experience: The Inspiration for

Self," Proceedings of ECOOP'95.

NASA/TM--2000-209953 27



[33] Watters, A., van Rossum, G., and Ahlstrom, J., 1996, hTtemet Programming with Python,

MIS Press/Henry Holt Publishers.

[34] Wirth, N. and Gutknecht, J., 1989, "The Oberon System," Software: Updated Practice and

Experience, 19(9), p. 857.

[35] Wollrath, A., Riggs, R. and Waldo, J., 1996, "A Distributed Object Model for the Java TM

System," Proceedings of the Second USENIX Conference on Object-Oriented Technology

and Systems (COOTS), pp. 219-231.

[36] Vinoski, S, 1997, "CORBA: Integrating Diverse Applications Within Distributed

Heterogeneous Environments," IEEE Communications, 35(2), pp. 46-55.

[37] Voyager, 1997, "Voyager: The Agent ORB for Java" Online document. Available at htlp://

www.objectspace.com/.

[38] Yeong, W., Howes, T., and S. Kille, "Lightweight Directory Access Protocol", Request For

Comments 1777," Internet Engineering Task Force. Available at http://www.ietf.org/rfc/

rfc1777.txt.

[39] Zimmerman, P, 1994, PGP User's Guide, MIT Press, Cambridge, 1994.

NASA/TM--2000-209953 28



©
©

e-

_9

O

©
©

e"

_9

O

Aerodynamic I
Analysis

Propulsion _Analysis

Structural _Analysis

.L
Additional

Disciplines

Experimental
Testing

_ r

K Model
Fabrication

Conceptual
Design

CAD
Definition

1
Detailed Final

Design

Figure 1- The Aircraft Design Process. The process

involves conceptual, preliminary and detailed final design

phases. The preliminarY design phase includes both major

and minor design loops. In the minor design loop, separate

disciplinary analysis such as aerodynamic, propulsion,

and structural analysis are carried out. Additional

disciplinary analysis, such as controls, loading, stability,

acoustics, etc. have been omitted for clarity. Once a design

is converged upon in the minor loop, it is experimentally

tested in the major design loop. After convergence of the

major design loop, the detailed final design phase is

executed.

NASA/TM--2000-209953 29



(a)
i

(b)

(c)

0-D

l-D

om
-- 2-D
"O
om

3-D

r ,.i r

_ _ t _ Empirical
Empirical _ _ Performance
Performance 1 t
Maps i i Maps

I I

I i.

"I' a," VelocityV V V V V V[11 . Diagram
I1 II

Beam Model 11 '1

I

I

I

I

!t

I

I

I

f I

I

I

[

1

I

I

I

I

J

2-D Grid

Figure 2: (a) Decomposition of aircraft into high-level components; (b)

decomposition of engine component; and (c) collection of models (multimodels) at

differing levels of fidelity and discipline for Compressor component.

NASA/TM--2000-209953 30



(a)

(b)

(c)

Control
Volume j

Element

• .J ...... -..

Conservation Equations
00

continuity _/ =-v.cov)

lllOllletlttltll 33-_tpV) + V,,(pVV) -- -V(p + V,)T)

ener_/ 3(pe) = -V*(peV+q +1-I .V)

,)

t •

i

i
I

Fluid
Port

C°w_ect°r

Transform

Structural

Port

Control
Volume

:¢;:; u

t I

.:-b_. J

(d)

Figure 3: Mapping of engine physical domain to computational framework.

(a) Engine is decomposed into separate components, such as the Fan and

Compressor. Component control volumes are defined (b), with behavior

defined by conservation laws. Components are represented in Onyx as

Elcments (c), whose Ports are connected by Conncctors. Component behavior

is defined by a DomainModel (d) which may apply numerical discretization

methods to solve the conservation equations. Data exchange at control volume

boundaries is passed via Ports and Connectors, with multifidelity and

interdisciplinary mapping handled by Transform objects.

NAS A/TM--,.000- 209953 31



interface

E/eme/lt

children I

ComposlteElement

+ getElementtnfo0
+ init0

+ run() O
+ stop() ,

,,

braIlc in children_

I :.run(); l

+ initO
+ runO
+ stop()

+ add()
+ removeO
+ addPo:tO

+ remotePortO
÷ getPortsO

+ getEtementlnfoO

1
A.J,

1
i

DefaultElement

+ run()
* stop()
+ addO

+ remove{)

+ addPortO
+ remotePortO

+ getPortsO

ports

SlmpleCompmssor

+ getElementlnfo0

+ inil0
+ run() O

+ stop(} ,
I
i

t tF_de[execute0;_

interface

DomainModel

+ execute()
+ haltO

i
LI'L

,, I

[ gefauttDomalnModel
+ execute()

+haltO

+
I ComressotDomalnModel

+ execute()
+ halt()

I
-- -- I ZeroDFluidPort

I
+ getDataSetO

+ putDataSetO

I SlmpleC°mlxess°rD°mainM°del J I
+ execute0 + execute0
+ halt() + halt_)

I FluidPort 1
+ getDataSetO
+ putDataSetO

CFD CompessorDomainModet FemComptessorDomainModel

+executeO

+ halt()

interface I

Port '_1

+ getDataSetO
+ putDataSetO

I
t,

,t.l,z
i

OefaultPorf f connector
+ getDataSet0
+ putDataSetO

2
I

Sb'uelural_rl ]
+ getOataSetO

+ putDataSetO

),
I I

ZeroOStructuralPort t [
+ getDataSetO I
+ putDataSetO /

OneDRuidPort

+ getDataSetO

+ putDataSetO

OneOStructuralPort

+ gelDataSet0
+ putDataSet0

transforr_

I interface i

C_noct_

+ getDataSetO
+ putDataSet(

i
J..IL

!
!

DefaultConnector I port2P°r£1
+ getDamSetO

+ putOataSetO

i interface I
"rransform

+ transform()

Lla
i

Default'rransform

+ transform0

FluIdlDto2D

+ transform 0

Flutd2Dto3D

+ transform()

1DTherm altoStmct

+ transform0

Figure 4: A portion of the Onyx component architecture class structure.

NASA/TM--2000-209953 32



Onyx _ , ::,.......................3

F____t_ Integrat°r !

Fuselage Design Wing Design I _ ' T
Team Server Team Server + I:'

h_ I ;;ookup.....aming/..... / _ - - "l_i Directory
:'_- bind Hqng • B Server

bind Fuse;age ....... _ : : : --I_ .,_k

-.L.

IO _ <_oinponent i

,_BIL _ Deployer !
Engine
Component •

_ &_ System_.!n.!eg.ra.!°':......

',f
!

i Naming/
I ._:2

= lookup ._,,_j Directory, Server

Compressor i
Design Team Mixer Design '
Server Team Server I

-i 'O_ m O ,

Compressor bind Mixer

I

0
I
r

Rudder Design
Team Server

bind Rudder 7-_

Supercomputer

• Fan Design

eam Server

5;5Z_,7 :I
o

_1_<! C°mp Orienti

T ,Deployer i
Compressor
Component

:£iComponent ilAuthor

Compressor •

Model J
<_ Model

Author|

_,_/Component I _ ] Deployer,r.4 .................................................T
Mixer Fan
Component _ _l

J Component__

..... _ Component i Component
! Author i Author

Mixer • Fan •
Model Model/

_t11_ [Au}.h.orJ "iAu_!h2r ]

Mixer_si_nTeam.:.......i icorn 3resSor Design Team Fan Design Team

Figure 5: Exchange of digital objects in a Web-based simulation environment.

NASA/TM--2000-209953 33



Figure 6: Overview of Onyx Visual Assembly Interface.

NASA/TM--2000-209953 34





REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and ma_ntaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 92202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01B8), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 2000 Technical Memorandum

4. TITLE AND SUBTITLE

Improving the Aircraft Design Process Using Web-based Modeling

and Simulation

6. AUTHOR(S)

John A. Reed, Gregory J. Follen, and Abdollah A. Afjeh

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. FUNDING NUMBERS

WU-509-10-31---00

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-12209

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM--2000-209953

11. SUPPLEMENTARY NOTES

This work was supported by the High Performance Computing and Communication Project (HPCCP) at the NASA

Glenn Research Center. John A. Reed, and Abdollah A. Afjeh, The University of Toledo, 2801 West Bancroft Street,

Toledo, Ohio 43606, (work funded under NASA Grant NAG3-2019); Gregory J. Follen, NASA Glenn Research Center.

Responsible person, Gregory J. Follen, organization code 2900, (216) 433-5193.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Categories: 01, 05 and 07 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 621--0390

13. ABSTRACT (Maximum 200 words)

Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promis-

ing means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced

multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing

platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative

composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the

potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and

complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

14. SUBJECT TERMS

Web-based simulation; Aircraft design; Distributed simulation; Javarr't; Object-oriented

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CI"ASSIFICATION
OF THIS PAGE

Unclassified

15. NUMBER OF PAGES
40

16. PRICE CODE

19. SECURITYCLASSIFICATION
OF ABSTRACT

Unclassified

A03

20. LIMITATION OF ABSTRACT

Standard Form :298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-1B
298-102


